91 research outputs found

    Capacity Value of Wind Power

    Get PDF
    Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for generation system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to generation system adequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America, along with some new analysis, are highlighted with a discussion of relevant issues also given

    Day-ahead allocation of operation reserve in composite power systems with large-scale centralized wind farms

    Get PDF
    This paper focuses on the day-ahead allocation of operation reserve considering wind power prediction error and network transmission constraints in a composite power system. A two-level model that solves the allocation problem is presented. The upper model allocates operation reserve among subsystems from the economic point of view. In the upper model, transmission constraints of tielines are formulated to represent limited reserve support from the neighboring system due to wind power fluctuation. The lower model evaluates the system on the reserve schedule from the reliability point of view. In the lower model, the reliability evaluation of composite power system is performed by using Monte Carlo simulation in a multi-area system. Wind power prediction errors and tieline constraints are incorporated. The reserve requirements in the upper model are iteratively adjusted by the resulting reliability indices from the lower model. Thus, the reserve allocation is gradually optimized until the system achieves the balance between reliability and economy. A modified two-area reliability test system (RTS) is analyzed to demonstrate the validity of the method.This work was supported by National Natural Science Foundation of China (No. 51277141) and National High Technology Research and Development Program of China (863 Program) (No. 2011AA05A103)

    State-of-the-art of design and operation of power systems with large amounts of wind power, summary of IEA Wind collaboration

    Get PDF
    An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The task “Design and Operation of Power Systems with Large Amounts of Wind Power” is analysing existing case studies from different power systems.There are a multitude of studies made and ongoing related to cost of wind integration. However, the results are not easy to compare. This paper summarises the results from 15 case studies

    A case study on risk and return implications of emissions trading in power generation investments

    Full text link
    This paper explores quantitative implications of the European Union Emissions Trading Scheme (EU ETS) on power capacity investment appraisal in a deregulated market. Risk and return of three different types of power plants, a gas-fired condensing power plant; a hydro power plant with a reservoir; and an off-shore wind power farm, are studied and compared in the regulatory environment of Finland. A single-firm exogenous and stochastic price model is used to simulate possible market outcomes. The model runs suggest that emissions trading increases the expected return of all three power plant technologies. The increase in risk is significant only in the case of the gas-fired power plant. Keywords

    Strategies for continuous balancing in future power systems with high wind and solar shares

    Get PDF
    The use of wind power has grown strongly in recent years and is expected to continue to increase in the coming decades. Solar power is also expected to increase significantly. In a power system, a continuous balance is maintained between total production and demand. This balancing is currently mainly managed with conventional power plants, but with larger amounts of wind and solar power, other sources will also be needed. Interesting possibilities include continuous control of wind and solar power, battery storage, electric vehicles, hydrogen production, and other demand resources with flexibility potential. The aim of this article is to describe and compare the different challenges and future possibilities in six systems concerning how to keep a continuous balance in the future with significantly larger amounts of variable renewable power production. A realistic understanding of how these systems plan to handle continuous balancing is central to effectively develop a carbon-dioxide-free electricity system of the future. The systems included in the overview are the Nordic synchronous area, the island of Ireland, the Iberian Peninsula, Texas (ERCOT), the central European system, and Great Britain
    • 

    corecore